端粒酶(Telomerase),在细胞中负责端粒的延长的一种酶,是基本的核蛋白逆转录酶,可将端粒DNA加至真核细胞染色体末端,把DNA复制损失的端粒填补起来,使端粒修复延长,可以让端粒不会因细胞分裂而有所损耗,使得细胞分裂的次数增加。端粒在不同物种细胞中对于保持染色体稳定性和细胞活性有重要作用,端粒酶能延长缩短端粒(缩短的端粒其细胞复制能力受限),从而增强体外细胞的增殖能力。端粒酶在正常人体组织中的活性被抑制,在肿瘤中被重新激活,从而可能参与恶性转化。端粒酶在保持端粒稳定、基因组完整、细胞长期的活性和潜在的继续增殖能力等方面有重要作用。端粒酶的存在,就是把 DNA 复制的缺陷填补起来,即由把端粒修复延长,可以让端粒不会因细胞分裂而有所损耗,使得细胞分裂的次数增加。
据实验表明,温度、PH值、金属离子等均能影响酶的活度,具体表现在以下几个方面:
①温度:
由于酶对热是不稳定的,所以在不同的温度下,酶的活度是不同的。低温时,酶的活度很低,随着温度的升高,酶的活度逐渐增加,在某一温度下,酶的活度表现最高,此温度称为这种酶的最佳温度。
所谓稳定温度是指酶在该温度范围内是稳定的,不发生或极少发生失活现象。
每种酶都有它的稳定温度和作用最佳温度。酶退浆应选择所用酶的最佳温度,以使酶的活性及活性的稳定性都具有较大的数值。
胰酶的耐热性较差,稳定温度若低于35℃,高于55℃,则即失活,它的最佳温度为40~55℃,而BF-7658淀粉酶的耐热性高,40~85℃活性较高,20℃时也有较高的活性,当温度为100℃时,其活性尚未完全消失。酶的最佳温度可因加入某些活化剂而提高。同时可因与淀粉作用的时间不同而不同。
土壤酶是存在于土壤中各酶类的总称,是土壤的组成成分之一。土壤酶活性包括已积累于土壤中的酶活性,也包括正在增殖的微生物向土壤释放的酶活性。它主要来源于土壤中动物、植物根系和微生物的细胞分泌物以及残体的分解物。
土壤酶活性的主要特征
土壤各类酶产生相应酶的专一生物化学反应产物的速度。土壤中酶的类型很多,常以测定土壤某一种类酶的活性,表征土壤酶的存在和酶促反应速度,以评估土壤某些营养物质的转化情况和土壤肥力状况。经常测定土壤酶活性的酶类有:转化酶、蛋白酶、磷酸酶、脲酶、水解酶、多酚氧化酶、过氧化氢酶和硫酸还原酶等。
迄今为止,已经被测定的土壤酶活性达到约60种。这些酶参与了土壤中一切生物化学过程:腐殖质的合成与分解;有机化合物、动植物和微生物残体的水解与转化;以及土壤中有机、无机化合物的各种氧化还原反应等等。这些过程与土壤中各营养元素的释放与贮存、土壤中腐殖质的形成与发育、以及土壤的结构和物理状况都是密切相关的。也就是说,它们参与了土壤的发生和发育以及土壤肥力的形成和演化的全过程。
1.底物浓度
除选择适合的底物外,在实际应用中更多考虑的是底物浓度。由于[S]与反应速度V成双曲线关系,在酶活性测定时,要求[S]达到一定水平以保证酶活性与酶量成正比。[S]范围一般选择在10~20Km为宜,此时反应速度基本达到最大反应速度,测定的误差在可接受范围。
2.酶浓度
在反应条件一定时,酶浓度与反应速度成正比。按照中间产物学说,只有[S]>>[E]时,酶才能被底物分子饱和,反应速度才能达到最大值。因此当标本酶活力过高时,应将标本适当稀释后再加以测定。
3.温度
不同的酶最适温度可以不同,多数酶的最适温度在37~40℃,高于或低于最适温度,酶活性都降低。目前,酶活性的测定温度尚未统一,但常规实验室多使用37℃。温度对酶促反应的影响程度通常用温度系数(Q10)表示。温度系数指温度每升高10℃,化学反应速度增加的倍数。Q10通常为l~2。由温度系数得知,温度的变化对酶活性有着重要影响,因此要求酶活性测定要在恒温条件下进行,温度波动要控制在±1℃。